Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(6): 1547-1562.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428424

RESUMO

We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.


Assuntos
Genoma , Primatas , Animais , Humanos , Sequência de Bases , Primatas/classificação , Primatas/genética , Evolução Biológica , Análise de Sequência de DNA , Variação Estrutural do Genoma
2.
Cell ; 186(14): 2977-2994.e23, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37343560

RESUMO

Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell-cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells and cerebral organoids, supporting the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells reshaped the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.


Assuntos
Hominidae , Células-Tronco Neurais , Células-Tronco Pluripotentes , Células-Tronco , Animais , Humanos , Pan troglodytes/genética
3.
Science ; 380(6643): eabm1696, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104607

RESUMO

Human accelerated regions (HARs) are conserved genomic loci that evolved at an accelerated rate in the human lineage and may underlie human-specific traits. We generated HARs and chimpanzee accelerated regions with an automated pipeline and an alignment of 241 mammalian genomes. Combining deep learning with chromatin capture experiments in human and chimpanzee neural progenitor cells, we discovered a significant enrichment of HARs in topologically associating domains containing human-specific genomic variants that change three-dimensional (3D) genome organization. Differential gene expression between humans and chimpanzees at these loci suggests rewiring of regulatory interactions between HARs and neurodevelopmental genes. Thus, comparative genomics together with models of 3D genome folding revealed enhancer hijacking as an explanation for the rapid evolution of HARs.


Assuntos
Loci Gênicos , Neurogênese , Animais , Humanos , Cromatina/genética , Genoma Humano , Genômica , Pan troglodytes/genética , Neurogênese/genética , Aprendizado Profundo
4.
Curr Opin Neurobiol ; 80: 102710, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003107

RESUMO

Comparative studies of hominids have long sought to identify mutational events that shaped the evolution of the human nervous system. However, functional genetic differences are outnumbered by millions of nearly neutral mutations, and the developmental mechanisms underlying human nervous system specializations are difficult to model and incompletely understood. Candidate-gene studies have attempted to map select human-specific genetic differences to neurodevelopmental functions, but it remains unclear how to contextualize the relative effects of genes that are investigated independently. Considering these limitations, we discuss scalable approaches for probing the functional contributions of human-specific genetic differences. We propose that a systems-level view will enable a more quantitative and integrative understanding of the genetic, molecular and cellular underpinnings of human nervous system evolution.


Assuntos
Encéfalo , Sistema Nervoso , Humanos , Encéfalo/fisiologia , Evolução Biológica
5.
bioRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993685

RESUMO

Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether changes in human cells alter requirements for essential genes. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells, providing support for the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells can reshape the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.

6.
Neuron ; 111(6): 857-873.e8, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640767

RESUMO

Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.


Assuntos
Encéfalo , Elementos Facilitadores Genéticos , Pan troglodytes , Animais , Humanos , Cromatina , Aprendizado de Máquina , Pan troglodytes/metabolismo , Fatores de Transcrição/genética , Encéfalo/crescimento & desenvolvimento
7.
bioRxiv ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38234800

RESUMO

Deletion of functional sequence is predicted to represent a fundamental mechanism of molecular evolution1,2. Comparative genetic studies of primates2,3 have identified thousands of human-specific deletions (hDels), and the cis-regulatory potential of short (≤31 base pairs) hDels has been assessed using reporter assays4. However, how structural variant-sized (≥50 base pairs) hDels influence molecular and cellular processes in their native genomic contexts remains unexplored. Here, we design genome-scale libraries of single-guide RNAs targeting 7.2 megabases of sequence in 6,358 hDels and present a systematic CRISPR interference (CRISPRi) screening approach to identify hDels that modify cellular proliferation in chimpanzee pluripotent stem cells. By intersecting hDels with chromatin state features and performing single-cell CRISPRi (Perturb-seq) to identify their cis- and trans-regulatory target genes, we discovered 19 hDels controlling gene expression. We highlight two hDels, hDel_2247 and hDel_585, with tissue-specific activity in the liver and brain, respectively. Our findings reveal a molecular and cellular role for sequences lost in the human lineage and establish a framework for functionally interrogating human-specific genetic variants.

8.
Am J Hosp Palliat Care ; 38(6): 590-595, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33267626

RESUMO

Hospice and palliative care are in the beginning stages of providing inclusive care to older lesbian, gay, bisexual, transgender, queer (LGBTQ) patients. This inclusivity is exceedingly more pressing given the growing population of out and aging LGBTQ individuals. Hospice and palliative literature recognizes that spirituality and religion can be fraught topics for LGBTQ patients. A few resources are available to help providers give more inclusive care. Few in hospice and palliative care, however, explicitly outline the direct connection for LGBTQ elders between their sexuality and their spiritual lives. 16 LGBTQ individuals born before 1964 were interviewed in the Colorado Front Range. Keeping with the tradition of critical theory, participants were asked "is there a connection for you between your sexuality and your spirituality? if so, what?" The interviews were analyzed using a qualitative conceptual content analysis method. All 16 participants responded that there was a connection for them. The participants expanded on this connection using five themes in their answers: the sexual act itself is spiritual; their authentic LGBTQ journey as spiritual; love/attraction is spiritual; spirituality and sexuality are inseparable; and finally, noting the ineffability of the sexuality-spirituality connection.


Assuntos
Hospitais para Doentes Terminais , Minorias Sexuais e de Gênero , Idoso , Colorado , Feminino , Humanos , Cuidados Paliativos , Sexualidade , Espiritualidade
9.
Sci Transl Med ; 10(452)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068571

RESUMO

Fragile X syndrome (FXS) is an X chromosome-linked disease leading to severe intellectual disabilities. FXS is caused by inactivation of the fragile X mental retardation 1 (FMR1) gene, but how FMR1 inactivation induces FXS remains unclear. Using human neurons generated from control and FXS patient-derived induced pluripotent stem (iPS) cells or from embryonic stem cells carrying conditional FMR1 mutations, we show here that loss of FMR1 function specifically abolished homeostatic synaptic plasticity without affecting basal synaptic transmission. We demonstrated that, in human neurons, homeostatic plasticity induced by synaptic silencing was mediated by retinoic acid, which regulated both excitatory and inhibitory synaptic strength. FMR1 inactivation impaired homeostatic plasticity by blocking retinoic acid-mediated regulation of synaptic strength. Repairing the genetic mutation in the FMR1 gene in an FXS patient cell line restored fragile X mental retardation protein (FMRP) expression and fully rescued synaptic retinoic acid signaling. Thus, our study reveals a robust functional impairment caused by FMR1 mutations that might contribute to neuronal dysfunction in FXS. In addition, our results suggest that FXS patient iPS cell-derived neurons might be useful for studying the mechanisms mediating functional abnormalities in FXS.


Assuntos
Proteína do X Frágil de Retardo Mental/genética , Homeostase , Mutação/genética , Plasticidade Neuronal , Neurônios/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Tretinoína/metabolismo , Alelos , Animais , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Homeostase/efeitos dos fármacos , Humanos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tretinoína/farmacologia , Repetições de Trinucleotídeos/genética , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...